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Abstract
We examine linear viscoelastic, and translational and rotational diffusion
properties of colloidal model dispersions. Theoretical results are discussed,
in comparison with experiments, for monodisperse suspensions of charged
and neutral colloidal spheres, and for binary dispersions of differently sized
tracer and host particles. The theoretical methods employed comprise a
mode-coupling scheme for Brownian particles, and a rooted cluster expansion
scheme of tracer diffusion with two- and three-body hydrodynamic interactions
included. We analyse in particular the validity of various empirical
generalized Stokes–Einstein–Debye (SED) relations between the (dynamic)
shear viscosity and translational/rotational diffusion coefficients. Some of
these generalized SED relations are basic to microrheological measurements
aimed at characterizing the viscoelasticity of complex fluids on the basis of the
diffusional properties of immersed tracer particles.

1. Introduction

The translational diffusion coefficient, Dt
0, of a single colloidal sphere of radius a in an

unbounded Newtonian solvent with shear viscosity η0 is given by the familiar Stokes–Einstein
(SE) relation, Dt

0 = kB T/ f t
0 , with friction coefficients f t

0 = 6πη0a and 4πη0a for stick and
slip boundary conditions, respectively. Likewise, the rotational diffusion coefficient, Dr

0, of an
isolated sphere is related to η0 by the Stokes–Einstein–Debye (SED) relation Dr

0 = kB T/ f r
0 ,

with f r
0 = 8πη0a3 in the case of a sticking solvent.

It is of considerable interest to search for generalizations of these single-particle SE(D)
relations, which allow one to relate certain diffusional transport properties in concentrated
colloidal suspensions to effective suspension viscosities. From a valid generalized SE(D)
relation, one can infer a viscoelastic property of the suspension in a non-invasive way and for
small sample volumes, by determining the translational or rotational dynamics of a dispersed
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tracer particle. Moreover, valid frequency-extendedgeneralized SE(D) relations can be used to
determine viscoelastic properties of inhomogeneous (biological) samples using light scattering
techniques, for a broad band of fluid strain frequencies not accessible to mechanical rheometers.

For example, the following pair of translational SE relations have been suggested:

Dt
S = kB T

6πη∞(�)aT
(t � τI ) and Dt

L = kB T

6πη(�)aT
(t � τI ). (1)

Here, the translational short-time and long-time self-diffusion coefficients Dt
S(�) and Dt

L (�)

of a tracer sphere with radius aT are related, respectively, to the high-frequency limiting shear
viscosity η∞, and to the static shear viscosity η of the host dispersion. The host dispersion
consists of colloidal spheres of radius aH and volume fraction �. The particles are subject
both to direct interactions (DI), e.g. excluded-volume interactions, and to solvent-mediated
hydrodynamic interactions (HI). This makes it necessary to distinguish between short-time
(t � τI ) and long-time transport properties (t � τI ), with the structural relaxation time τI

typically in the millisecond range [1, 2]. Note that Dt
S and η∞ are both hydrodynamic quantities,

while Dt
L and η are long-time transport coefficients of a suspension slightly perturbed from

equilibrium by thermal Brownian motion or weak external shear flow. The range of validity of
equation (1) has been explored for short and long times mainly for monodisperse systems with
a tracer identical to the host spheres (cf, e.g., [3–5]). Very recently, the rotational short-time
analogue of equation (1),

Dr
S = kB T

8πη∞(�)a3
T

(t � τ r
I ≈ τI ), (2)

has also been examined [6–8], where Dr
S is the short-time self-diffusion coefficient of a probe

sphere. At first sight, one might expect Dr
L (�) = kB T/(8πη(�)a3

T ) to be the long-time SED
analogue of equation (2). However, the long-time self-diffusion coefficient of a tracer sphere
is defined in a strict sense only for λ = aT /aH � 1, when the host suspension behaves as a
continuum on the length scale and timescale of the tracer. For aT ≈ aH , a true long-time Dr

L
is non-existent, since the rotational scattering function probed by depolarized dynamic light
scattering decays then non-exponentially at long times.

An interesting extension of the SE relations in equation (1) to finite strain frequencies ω

has been proposed by Mason and Weitz, namely [9]

η(s)

η0
= Dt

0

s2W (s)
, (3)

with s = iω. This frequency-dependent SE relation relates the dynamic viscosity, η(ω) =
η′(ω) − iη′′(ω), of the host dispersion, or of a general viscoelastic matrix like a polymer
solution, to the Laplace transform, W (s), of the mean squared displacement W (t) =
〈[rT (t)−rT (0)]2〉/6 of the probe sphere. Equation (3) reduces to the short-time and long-time
SE relations in equation (1) for s → ∞ and 0, respectively.

This paper reports on investigations by the author and co-workers on the validity of
generalized SE(D) relations, including equations (1)–(3), for suspensions of colloidal spheres.
Results are discussed for hard-sphere suspensions, and suspensions of charge-stabilized
spheres with a small amount to zero excess electrolytes. The latter systems serve as a
representative model for colloidal systems with strong and long-range particle repulsions.
In the first part of this work, we examine linear viscoelastic and diffusional properties of
monodisperse systems (where aT = aH ), with long-time transport properties determined from
a (hydrodynamically rescaled) mode-coupling theory (MCT) [10–12]. The MCT for Brownian
particle systems has been established, through comparison with computer simulations and
experiment, as a versatile tool for calculating transport coefficients and dynamic scattering
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functions in dense systems [5, 13–16]. We show that most of the generalized SE(D) relations
are violated to various extents when applied to monodisperse systems. The strongest deviations
from SE(D) behaviour are observed for charge-stabilized suspensions. For these systems, the
breakdown of the continuum viscoelasticity assumption for the host matrix underlying the
SE(D) relations becomes most apparent [17]. However, the description of the host suspension
as a continuous viscoelastic medium without local inhomogeneities is expected to be valid
when the probe sphere is much larger than the host particles. The Mason–Weitz SE relation,
in particular, should be then more reliable as a means for probing the (local) viscoelasticity of
the matrix, at least for a limited frequency band. This assertion has been verified by Levine
and Lubensky [18] for the special case of a two-fluid model describing the dynamics of a
viscoelastic network coupled to a Newtonian solvent.

In this context, it interesting to identify the conditions for which the continuum behaviour
is reached for a binary system of colloidal hard spheres, when the tracer size is progressively
enlarged. Therefore, we explore the short-time self-diffusion coefficient of the tracer as a
function of tracer-to-host size ratio λ = aT /aH , host concentration �, and host viscosity.

2. Long-time diffusion and viscoelasticity

A rigorous starting point for calculating linear viscoelastic properties of colloidal mixtures is
provided by the Green–Kubo relation for the dynamic viscosity [12],

η(ω) − η∞ = 1

kB T V

∫ ∞

0
dt e−iωt 〈σxy(0)σxy(t)〉 = 1

kB T V

∫ ∞

0
dt e−iωt �η(t), (4)

with σxy the microscopic shear stress, V the system volume, and �η the stress relaxation
function. Equation (4) holds for arbitrary densities,and is used in Stokesian dynamics computer
simulations to determine the viscosity in the low-shear limit [19]. Furthermore, it is the
starting point for the idealized MCT of linear viscoelasticity. In MCT, the η(ω) of a mixture is
approximated in terms of the matrices, S(q, t) and S(q), of dynamic and static partial structure
factors as [12]

η(ω) − η∞ = kB T

6π2

∫ ∞

0
dt e−iωt

∫ ∞

0
dq q4 Tr

{[
dC

dq
· S(q, t)

]2}
, (5)

with C(q) = [1−S(q)]−1. This equation for η(ω) is augmented by MCT equations for S(q, t),
allowing for a self-consistent calculation of diffusional and viscoelastic properties in terms of
static quantities [11].

The influence of HI has been neglected in equation (5). An approximate inclusion of far-
field HI into idealized MCT has been discussed in [11, 12]. The MCT with far-field HI aims
at describing the dynamics of charge-stabilized suspensions in the fluid regime. Many-body
HI effects in concentrated suspensions with short-range particle repulsions are accounted for
semi-heuristically by multiplying long-time transport coefficients, calculated without HI using
MCT, by the corresponding reduced short-time properties with HI included. A rationale of
this hydrodynamic rescaling procedure has been given in [5], where it is further explained why
hydrodynamic rescaling is not applicable to systems with long-range DI. Figure 1 shows HI-
rescaled MCT results for the (reduced) viscosity η, and for reciprocal long-time self-diffusion
and collective diffusion coefficients, Dt

L and Dc
L(qm), of monodisperse colloidal hard spheres,

in comparison with experimental data. Dc
L(qm) quantifies the long-time exponential decay

of the dynamic structure factor S(q, t) at a wavenumber qm related to the extension of the
next-neighbour cage around a sphere. Dc

L (qm) ceases to exist below a certain concentration
threshold (� ≈ 0.2 for hard spheres), where caging effects become so small that S(qm, t)
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Figure 1. Reduced shear viscosity η/η0, reciprocal long-time collective self-diffusion coefficient
Dt

0/Dc
L (qm), and reciprocal long-time self-diffusion coefficient Dt

0/Dt
S for a hard-sphere

suspension versus volume fraction �. Symbols are experimental data from [20], and the lines
are the HI-rescaled MCT predictions [5, 13].

decays non-exponentially [14]. There is good overall agreement between theoretical and
experimental data for η and Dc

L (qm). Moreover, the long-time SE relation in equation (1) is
confirmed semi-quantitatively, to the same level of accuracy as the SE relation,

Dc
L (qm) = kB T

6πηa
, (6)

between Dc
L(qm) and η.

While these SE relations hold reasonably well for hard spheres, a strong violation of the
same relations is predicted by MCT for de-ionized, i.e. salt-free, suspensions of highly charged
colloidal spheres [5]. Conclusions similar to the ones for the long-time SE relations can be
drawn regarding the range of validity of the frequency-dependent SE relation in equation (3).
MCT predicts that this relation is valid to a qualitative degree for monodisperse hard spheres,
with increasing accuracy at larger volume fractions [5]. Pronounced violations of this relation
are found instead for (de-ionized) charge-stabilized suspensions (cf figure 2, left-hand panel).
Recently, a modified frequency-dependent SE relation, namely 	η(s) ≈ 	W (s), has been
proposed [5] which relates the normalized dynamic viscosity 	η(s) = (η(s) − η∞)/(η − η∞)

to 	W (s) = [1/(s2W (s)) − 1/Dt
S)]/[1/Dt

L − 1/Dt
S]. This modified SE relation refers to the

reduced frequency dependences of η(s) and W (s) only. According to MCT, it should apply
more quantitatively than equation (3), and also for the case of charge-stabilized suspensions
(see figure 2, right-hand panel). To date, this frequency-dependent SE relation has not been
tested experimentally.

3. Short-time SE(D) relations for monodisperse systems

For a test of the SE(D) relations for Dt
S and Dr

S in equations (1) and (2),we plot H a
S η∞/η0 versus

�, with H a
S = Da

S/Da
0 and a ∈ {t, r}. Figure 3, left-hand panel, summarizes theoretical and

experimental hard-sphere results for H a
S η∞/η0, with η∞ determined from the semi-empirical
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expression [24]

η∞/η0 = [1 + 1.5�(1 + � − 0.189�2)]/[1 − �(1 + � − 0.189�2)]. (7)

This expression agrees well with known experimental data for hard spheres up to random
close packing, � ≈ 0.64, where η∞ diverges. For H t

S and H r
S we use the semi-empirical

expression H t
S = (1 − 1.56�)(1 − 0.27�) proposed in [24], and the second-order virial result

H r
s = 1 − 0.631�− 0.726�2 derived in [25]. There is good agreement between experimental

and theoretical values for H a
s . As seen, both short-time SE(D) relations are disobeyed for finite

�, with larger deviations for rotational diffusion. Figure 3, left-hand panel, examines further
the short-time analogue, Dc

S(qm) = kB T/(6πη∞(�)a), of equation (6), where η∞ is related to
the short-time collective diffusion coefficient Dc

S(qm) = Dt
0 H (qm)/S(qm). The hydrodynamic

function H (qm) of hard spheres and S(qm) are well described by H (qm) = 1 − 1.35� and
S(qm) = 1 + 0.644�(1 − 0.5�)/(1 − �)3, respectively, up to φ = 0.5 [14, 15]. The SE
relation for Dc

S(qm) is seen to be more accurate than the SE(D) relations for H a
S .

Consider next figure 3, right-hand panel, regarding the performance of the short-time
SE(D) relations when applied to semi-dilute and de-ionized charge-stabilized systems. As
predicted by theory and confirmed subsequently by experiment and computer simulations (see,
e.g., [1, 2]), the self-diffusion coefficients of these systems exhibit non-linear �-dependences,

H a
S = 1 − Aa�

Ea , (8)

with amplitudes Ar ≈ 1.3, At ≈ 2.5 and exponents Er = 2, Et = 4/3. The theoretical curve
for Dc

S(qm), plotted in figure 3, right-hand panel, has been calculated using H(qm) = 1+Ac�
0.4,

with Ac = 1.5, and S(qm) determined from the rescaled mean-spherical approximation [1].
The non-linear density dependence of the short-time transport coefficients for de-ionized
suspensions originates from the �−1/3 scaling of the mean cage radius rm = 2π/qm [1].
We approximate the short-time viscosity of highly charged spheres, for � � 0.1, by the
leading-order virial form η∞/η0 ≈ 1 + 2.5�(1 + �). According to figure 3, right-hand panel,
deviations from H a

S η∞/η0 = 1 are similarly pronounced to those for hard spheres. In contrast
to the hard-sphere case, however, the SE relation for Dc

S(qm) is clearly violated for charged
spheres. The failure of the SE(D) relations for charge-stabilized systems is thus observed both
for long and short times.
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S [21]
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4. Tracer dynamics in host suspensions

With increasing λ = aT /aH , the tracer experiences the host suspension more and more
as an unstructured continuum, characterized by its macroscopic viscosity. To investigate
the approach towards the continuum limit, we have calculated the (reduced) short-time
translational/rotational self-diffusion coefficients of an infinitely dilute tracer species,

H a
S (λ,�) = 1 + ha

1S(λ)� + ha
2S(λ)�2, (9)

immersed in a host suspension of colloidal hard spheres, to quadratic order in the host volume
fraction �. Results for the first and second virial coefficients, ha

1S(λ) and ha
2S(λ), are obtained

from a rooted cluster expansion, with two-body and leading-order three-body HI included [6, 7].
Numerical results for H r

Sη∞/η0 versus �, with η∞ from equation (7), are displayed in figure 4,
left-hand panel, for various values of λ. Notice the rather slow convergence towards the SED
behaviour, with increasing λ, for the semi-dilute host dispersions under consideration. For all
λ considered, the first virial coefficient is well represented by

ha
1S = − 2.5

1 + ca
Sλ

−1
, (10)

with cr
S = 3.0 and ct

S = 0.366 [7].
Figure 4, right-hand panel, shows Da

S ≈ Da
0 [1 + ha

1S(λ)�] versus λ, for fixed � = 0.1.
It nicely illustrates the monotonic decline of the translational/rotational tracer coefficients,
from Da

S = Da
0 at λ = 0 towards Da

S = Da
0 (1 − 2.5�) + O(�2) for λ → ∞. The

large-λ limit is kB T/(6πη∞aT ) for a = t and kB T/(8πη∞a3
T ) for a = r , with η∞/η0 =

1 + 2.5� + 5�2 + O(�3). For large λ, the tracer thus experiences the host solution as an
effective fluid with a shear viscosity, characterized to first order in � by the Einstein result. As
is seen, rather large values of λ are required in the case of rotational diffusion for practically
reaching the continuum limit. According to experiment, however, the continuum behaviour of
the long-time rotational tracer diffusion coefficient is reached for smaller λ (i.e. for λ ≈ 10)
at larger �, due to the stronger many-body HI and DI of the tracer with the denser shell
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of surrounding host particles, and memory effects related to caging [8]. In our low-density
calculations, near-field lubrication forces and many-body HI contributions beyond the leading-
order three-body part have been neglected so far. For λ = 0, the point-like tracer diffuses for
short times in an essentially static environment of host spheres, so its dynamics is affected by
the solvent viscosity only. Figure 4, right-hand panel, displays also the long-time self-diffusion
coefficient Dt

L ≈ Dt
0[1 + ht

1L�] at low �, with ht
1L represented to good accuracy by [26]

ha
1L = 1 − 2.5

1 + 0.16λ−1
. (11)

For all λ, Dt
L < Dt

S , consistent with a general rule stating that, due to memory effects, long-
time transport coefficients of colloidal systems are always smaller than the corresponding
short-time coefficients [1].

Deviations from the SED behaviour of tracer diffusion can be intuitively rationalized by
introducing apparent slip–stick parameters, ν, according to [3, 8, 27]

Dt
S,L = kB T/[6πη0aT (1 + νt

S,L �η)]

Dr
S,L = kB T/[8πη0a3

T (1 + νr
S,L �η)],

(12)

with �η equal to η/η0 −1 and η∞/η0 −1 for long and short times, respectively. The parameter
ν is determined by

νa
S,L (λ,�) = (Da

0 /Da
S,L − 1)/�η(�). (13)

The friction coefficient has been split here into a part due to the solvent alone, which sticks,
and an additional frictional part originating from HI and DI with the host spheres. There is no
reason to expect a stick boundary condition, and hence the validity of the non-modified SED
relations, for the interaction part. Therefore, νa

S,L might range, in principle, from 1 for stick
boundary conditions (i.e. for ideal SED behaviour) down to 0 for zero excess friction.

In fact, for a dilute host dispersion of hard spheres one has

νa
S,L (λ,� = 0) = −0.4ha

1S,L(λ), (14)

with values of νa
S,L ranging from 0 for λ = 0 up to 1 for λ = ∞. For λ = 1,

νt
S(1,� = 0) = 0.73, which is a value rather close to the �-averaged slip–stick parameter

νt
S = 2/3. When νt

S is used in the modified SE relation, the experimentally determined Dt
S

of hard spheres is rather well reproduced up to � < 0.5 [8]. The excess frictional part is
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thus well described for hard spheres by the perfect slip form � f t
S(φ) = 4π(η∞ − η0)aT . For

rotational diffusion, νr
S(1,� = 0) = 0.25, i.e. a value close to the experimentally determined

�-averaged slip–stick parameter νr
S = 0.22 [8]. The latter value results in a remarkably good

description of the experimental H r
S in figure 3, right-hand panel. Note that νr

S is substantially
larger than the value 0 for perfect slip, since the influence of HI is clearly non-negligible at
finite host concentrations. For long-time translational diffusion finally, νt

L (1,� = 0) = 0.86.
This value of νt

L is consistent with the semi-quantitative accuracy of the long-time SE relation
in equation (1) at λ = 1.

For de-ionized suspensions of monodisperse charges spheres, MCT predicts that Dt
0/Dt

L >

η/η0 [5], leading to super-stick values of νt
L larger than one. This implies a breakdown of the

continuum picture, thus invalidating the non-modified and the modified long-time SE relations
in equations (1) and (12). Due to the long-range electrostatic interactions, a charged tracer
sphere experiences particularly strongly the discontinuous nature of its environment.
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